ABC Transporters B1, C1 and G2 Differentially Regulate Neuroregeneration in Mice
نویسندگان
چکیده
BACKGROUND ATP-binding cassette (ABC) transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1). METHODOLOGY AND PRINCIPAL FINDINGS Analyzing adult neurogenesis in ABC transporter-deficient animals in vivo and neuronal stem/progenitor cells in vitro resulted in complex findings. In vivo, the differentiation of neuronal progenitors was hindered in ABC transporter-deficient mice (ABCB1(0/0)) as evidenced by lowered numbers of doublecortin(+) (-36%) and calretinin(+) (-37%) cells. In vitro, we confirmed that this finding is not connected to the functional loss of single neural stem/progenitor cells (NSPCs). Furthermore, assessment of activity, exploratory behavior, and anxiety levels revealed behavioral alterations in ABCB1(0/0) and ABCC1(0/0) mice, whereas ABCG2(0/0) mice were mostly unaffected. CONCLUSION AND SIGNIFICANCE Our data show that single ABC transporter-deficiency does not necessarily impair neuronal progenitor homeostasis on the single NSPC level, as suggested by previous studies. However, loss of distinct ABC transporters impacts global brain homeostasis with far ranging consequences, leading to impaired neurogenic functions in vivo and even to distinct behavioral phenotypes. In addition to the known role of ABC transporters in proteopathies such as Parkinson's disease and Alzheimer's disease, our data highlight the importance of understanding the general function of ABC transporters for the brain's homeostasis and the regeneration potential.
منابع مشابه
Involvement of cholesterol membrane transporter Niemann-Pick C1-like 1 in the intestinal absorption of lutein.
PURPOSE Lutein is a carotenoid mainly found in green leafy vegetables and is located in the macula lutea in the human eye. Since humans cannot synthesize lutein de novo, it must be digested as food. The physiological importance of an orally administered compound depends on its interaction with target tissues. It is therefore important to clarify the absorption mechanism in the intestine. Choles...
متن کاملABC transporter-facilitated ATP conductive transport.
The concept that the cystic fibrosis (CF) transmembrane conductance regulator, the protein product of the CF gene, can conduct larger multivalent anions such as ATP as well as Cl- is controversial. In this review, I examine briefly past findings that resulted in controversy. It is not the goal of this review to revisit these disparate findings in detail. Rather, I focus intently on more recent ...
متن کاملGout, genetics and ABC transporters
Gout is a chronic arthritic disease associated with high levels of urate in blood. Recent advances in research have permitted the identification of several new and common genetic factors underlying the disease. Among them, a polymorphism in the ABC transporter gene ATP-binding cassette transporter isoform G2 has been highlighted. ATP-binding cassette transporter isoform G2 was found to be invol...
متن کاملThe chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes.
Apigenin is a plant flavonoid which has been shown to significantly inhibit UV-induced mouse skin tumorigenesis when applied topically, and may represent an alternative sunscreen agent in humans. We have investigated the molecular mechanism(s) by which apigenin inhibits skin tumorigenesis. Initial studies examined the effects of apigenin on the cell cycle. DNA flow cytometric analysis indicated...
متن کاملEnhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice
The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9)-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to ...
متن کامل